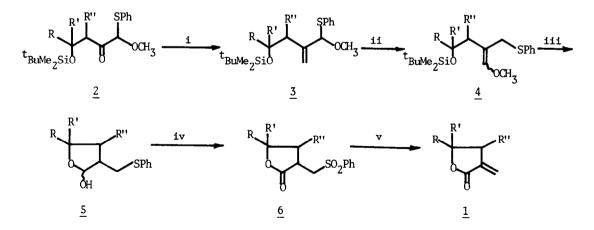
A NOVEL SYNTHETIC METHOD FOR α -METHYLENE- γ -BUTYROLACTONES


Tadakatsu Mandai, Kazuhito Mori, Keisuke Hasegawa, Mikio Kawada, and Junzo Otera* Okayama University of Science, Ridai-cho, Okayama 700, Japan

Summary: A novel synthetic method for α -methylene- γ -butyrolactones involving a thicallylic rearrangement as a key step was developed.

Various efforts have been devoted to development of effective synthetic method for α -methylene carbonyl compounds on account of their biological activities.¹⁾ In the course of our studies on the synthetic application of methoxy(phenylthio)methane,²⁾ we have found that α -methoxyallyl sulfides can be effectively transformed to α -methylene- γ -butyrolactones through an acid-catalyzed thicallylic rearrangement.

Our strategy is depicted in Scheme 1. β -Siloxyketones $\underline{2}^{3}$ were converted into α -methoxyallyl sulfides $\underline{3}$ through the Peterson olefination.²⁾ Then, the hexane solution of $\underline{3}$ was heated at reflux in the presence of silica gel (Wako Gel C-200, 1.5 g/l mmol) for 10 h.⁴⁾ The reaction mixture was diluted with ethyl acetate, stirred at room temperature for 30 min, and filtered to give γ -methoxyallyl sulfides $\underline{4}$ in excellent yields. Treatment of $\underline{4}$ with 30% H₂SO₄ in acetone for 20 h at room temperature afforded hemiacetals $\underline{5}$. Jones type oxidation effected conversion of $\underline{5}$ into lactones $\underline{6}$. Finally, desulfonylation of $\underline{6}$ with DBU in Et₂0 gave the desired compounds $\underline{1}$.

Scheme 1

i) Me_3SiCH_2MgCl , NaH-HMPA ii) SiO_2 , hexane, reflux iii) 30% H_2SO_4 , acetone, r.t. iv) $CrO_3-H_2SO_4$, acetone, 0 °C v) DBU, ether, r.t.

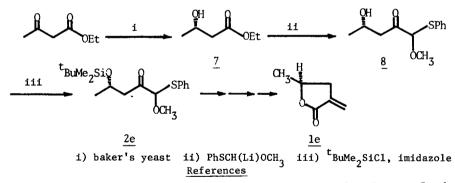

				yield (%) ^{a)} of				
entry	R	R'	R*'	3	4	<u>5</u>	<u>6</u>	<u>1</u>
1	с ₅ н ₁₁	н	H	72	94	65	76	<u>la</u> 79
2	Ph	н	H	60	93	64	60	<u>1b</u> 88
3	с ₆ н ₁₃	сн ₃	н	-	60 ^{b)}	53	77	<u>1c</u> 85
4	$C_{5}^{H}11$	Н	CH3	82	91	61	72	<u>1d</u> 74

Table 1. Synthesis of α -Methylene- γ -butyrolactones <u>1</u>.

a) Isolated yields after column chromatography (silica gel).

b) Based on 2.

The utility of the method is further attested by the synthesis of the optically active α -methylene- γ -butyrolactone <u>le</u>. Ethyl (S)-3-hydroxybutyrate (7) ($[\alpha]_D^{23} = +32.7^\circ$, 86% ee) was prepared from ethyl acetoacetate through reduction with baker's yeast. Then, 7 was treated with the anion of methoxy(phenylthio)methane (2.6 equiv) in THF at -78 °C for 30 min to afford β -hydroxyketone <u>8</u> (68%) which was converted into β -siloxyketone <u>2e</u>. Subjection of <u>2e</u> to the present procedure gave rise to optically active (S)-<u>le</u> ($[\alpha]_D^{23} = -30.0^\circ$) in 21% overall yield based on <u>2e</u>. The optical purity of (S)-<u>le</u> thus obtained is believed to be 84% on the basis of reported $[\alpha]_D^{(33.8^\circ)}$.

- P. Grieco, Synthesis, <u>1975</u>, 67. R. B. Gammil, C. A. Wilson, and T. Bryson, Synth. Commun.
 5, 245 (1975). S. S. Newaz, Aldrichimica Acta, <u>10</u>, 64 (1977).
- (2) T. Mandai, M. Takeshita, M. Kawada, and J. Otera, Chem. Lett., 1984, 1259.
- (3) β -Siloxyketones 2 were prepared according to the following procedure:

$$R''CH_2CONMe_2 \xrightarrow{1) LDA, RCOR'} t_{BuMe_sSiO} NMe_2 \xrightarrow{PhSCH(Li)OCH_3} 2$$

- Cf. R. E. Ludt, J. S. Griffith, K. N. McGrash, and C. R. Hauser, J. Org. Chem., <u>38</u>, 1668 (1973).
- (4) For an example of the acid-catalyzed thioallylic rearrangement, see: P. Brownbridge and S. Warren, J. Chem. Soc. Perkin I, <u>1976</u>, 2125.
- (5) K. Mori, Tetrahedron, <u>37</u>, 1341 (1981).
- (6) L. D. Martin and J. K. Stille, J. Org. Chem., <u>47</u>, 3630 (1982).

(Received in Japan 30 July 1984)